
A Comprehensive Study of

Ethereum Cryptoeconomics:
Consensus Layer Rewards and Penalties

Andy Yang

TL;DR
1. A validator can get rewards from attestation, sync committee participation, block

proposals, and whistleblow malicious activities.

2. Attestation rewards are about 84.375% of the optimal reward per epoch in the

consensus layer.

3. A validator must have at least 42.86% uptime to break even.

4. Optimal Annualized Staking Rewards per Validator in the consensus layer is about

0.997 ETH, with 3.11% APR.

1 Introduction
On September 6, 2022, Ethereum underwent a significant transition from Proof-of-Work

(PoW) to Proof-of-Stake (PoS) through the Paris upgrade, also known as "The Merge." This

leap marked a significant shift from ETH 1 to ETH 2 (a.k.a. "Serenity"). Following this

milestone shift, "Staking" stepped onto the stage, enabling validators to secure the network

and earn rewards. At the same time, "Mining" faded into the ashes of history and no longer

plays a significant role in the Ethereum consensus mechanism.

To ensure a seamless and well-guided transformation, the Ethereum Foundation has

meticulously outlined multiple phases of the Serenity upgrades in EIP-2982, providing a

roadmap for the network's continued evolution:

1. Phase 0: Launch of the Beacon Chain and PoS system for Decentralization

and Security

2. Phase 1: Sharding for Scalability

3. Phase 1.5: Bridge the gap between Phase 0 and Phase 1

4. Phase 2: Provide smart contract execution for shard chains.

Due to ongoing discussions within the Ethereum community, the roadmap for Ethereum has

also undergone some changes. During EthCC Paris, Vitalik proposes a new roadmap: “The

Merge,” “The Surge,” “The Verge,” and “The Purge.” Since the traditional "Sharding" model

https://twitter.com/cosmos1yandhii
https://www.youtube.com/watch?v=kGjFTzRTH3Q

is difficult and time-consuming to implement, "Proto-Danksharding" and “Danksharding"

have taken its place for now.

Based on our five years of experience with PoS systems, we recognize that Ethereum's

cryptoeconomics mechanisms could be more straightforward to understand under frequent

changes in the roadmap and multiple system upgrades. As the cryptoeconomics of

Ethereum have stabilized, we have written this report as a beginning of our three-part series:

● Introduction & Consensus Layer Rewards and Penalties

● Execution Layer Rewards

● Inactivity leak and Slashing

2 Breakdown by Layers: EL & CL
In this section, we first give an introduction to two Post-Merge layers. Then, we break down

the validator rewards allocated by the execution and consensus layers.

2.1 Post-Merge Layers
Generally, there are two layers in Ethereum: “ETH1” and “ETH2”. As of late 2021, these

terms are renamed “Execution Layer” and “Consensus Layer” in The Great Naming Note for

better clarity and inclusivity. For simplicity, we'll call these two layers CL and EL in the

following sections.

https://blog.ethereum.org/2022/01/24/the-great-eth2-renaming

The main difference between the two layers is their responsibilities.

● Execution Layer: Responsible for all non-consensus duties: Listening and

processing transactions, running smart contracts, and storing data.

● Consensus Layer: Responsible for consensus-related duties: Choosing fork,

processing attestations, finalizing transactions, and producing beacon blocks.

A Pre-Merge PoW block looks like this:

After “The Merge”, a Beacon block wrapped the modified PoW block:

There are several changes:

● Opcode Change: DIFFICULTY opcode returns PoW difficulty in the block header at

the Pre-Merge period. EIP-4399 replaced DIFFICULTY opcode for PoW with a

beacon chain random number opcode called prevRandao.

https://eips.ethereum.org/EIPS/eip-4399

● Block Structure Change: After the opcode changes, PoW blocks become execution

blocks assembled in consensus blocks (or beacon blocks). We can see a strange

thing here: there are two state-root fields. These two duplicate fields store different

data: The consensus layer is responsible for storing the state of the beacon chain,

and the execution layer is responsible for storing the EVM account's state.

We won't dive into the specs, as a later report might cover how these two layers or chains

work together.

2.2 Breakdown Rewards: EL and CL
You can receive both EL and CL rewards as a validator in Ethereum. But in the dark forest of

Crypto, there is no free lunch. You have to play your role in the network accordingly, even

being penalized if you don't do it well. Since rewards in these two layers depend on your

roles and responsibilities in the network, we'll cover these terms first to ensure clarity.

2.2.1 Network Roles
● Validator: The validator is an entity that deposits 32 ETH into the network and

receives rewards for maintaining the consensus of the ledger. Any of the roles

mentioned below are played by validators. Network assigned different duties to them.

● Proposer: Ethereum measures time in slots and epochs. Each slot is 12

(SECONDS_PER_SLOT) seconds, and 32 (SLOTS_PER_EPOCH) slots (6.4

minutes) make up an epoch. At each slot, a proposer is randomly chosen among all

active validators. The probability of being selected is weighted by its effective

balance. Once chosen, the proposer must produce a block in that slot.

● Attester: The attestation is the process where validators examine new blocks and

provide their opinions on their validity. Validators must process one attestation per
epoch, and each attestation corresponds to a specific slot.

● Sync Committee Participant: The sync committee is a new feature introduced in the

Altair upgrade to reduce network overhead for light clients. This committee has 512

(SYNC_COMMITTEE_SIZE) validators randomly selected and refreshed every 256

epochs (EPOCHS_PER_SYNC_COMMITTEE_PERIOD). The selected validators

are responsible for continuously signing the block header that represents the new

head of the chain at each slot.

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/block-proposal/
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md

2.2.2 Network Duties and Rewards
Execution Layer

1. Priority fee/ tips
Following EIP-1559, Ethereum now burns the base fee. As a result, the block

proposer now considers the priority fee/ tips as the primary economic incentive.

Paying tips incentivize the block proposer to get transactions included in the block as

soon as possible, thus fastening the transaction confirmation process.

2. MEV (Maximum Extractable Value)
Maximal extractable value (MEV) refers to the maximum value that can be extracted

from block production in excess of the standard block reward and gas fees by

including, excluding, and changing the order of transactions in a block.

Consensus Layer
To dive into CL rewards, we must first understand the basic units of rewards accounting.

Many sources still used deprecated rewards accounting methods before the Altair upgrade.

That's why we are focusing on this issue at the beginning of this section.

In Phase 0, the base reward is the optimal reward per epoch:

The base reward equals that amount divided by the applied times of the base reward.

(BASE_REWARDS_PER_EPOCH). Where base_reward_factor is 64,

base_rewards_per_epoch is 4, and sum(active balance) is the total staked ETH across all

active validators.

Proposer reward is ⅛ of base reward, where proposer reward quotient is 8:

Altair upgrade reformed the rewards accounting method by giving different duties different

weights and base reward calculations. The incentive of the shift is that slashing penalties will

overflow out of the maximum of uint64 mentioned in issue #1284 of the Ethereum consensus

specification. This change will result in a lower accuracy of the slashing penalty, and

sometimes, the slashing penalty will be 0. However, this does not affect the protocol security,

https://github.com/ethereum/consensus-specs/issues/1284
https://github.com/ethereum/consensus-specs/issues/1284

as it is mentioned in issue #1322 that the slashed validator has to pay a base penalty of 1

ETH, even if the calculated slashing penalty is 0. Vitalik also says that changing the

EFFECTIVE_BALANCE_INCREMENT from 1 ETH to 0.01 ETH can increase accuracy for

future needs.

Duty Parameter Type and Value

Source Vote TIMELY_SOURCE_WEIGHT uint64(14)

Target Vote TIMELY_TARGET_WEIGHT uint64(26)

Head Vote TIMELY_HEAD_WEIGHT uint64(14)

Participate Sync Committee SYNC_REWARD_WEIGHT uint64(2)

Propose Block PROPOSER_WEIGHT uint64(8)

N/A WEIGHT_DENOMINATOR uint64(64)

The WEIGHT_DENOMINATOR is 64, and the reward weight for accomplishing each part of

the duty is X / WEIGHT_DENOMINATOR. In the case of a timely head vote, for example, the

weight of the reward for a correct and timely head vote is 14/64.

https://github.com/ethereum/consensus-specs/issues/1322

We perform some calculations for the base reward to quantify the rewards validators can

get.

The exact balances change every epoch (due to rewards and penalties), so Ethereum stores

them in a compact array that requires rehashing only <32 MB to update, while the effective

balances (which are used for all other computations that require validator balances) are

updated using a hysteresis formula: if the effective balance is n ETH, and if the exact

balance goes below n-0.25 ETH, then the effective balance goes to n-1 ETH. If the exact

balance goes above n+1.25 ETH, the effective balance goes to n+1 ETH.

Since the exact balance must change by at least a full 0.5 ETH to trigger an effective

balance update, this ensures an attacker can't make effective balances update every epoch

and thus cause processing the chain to become very slow by repeatedly nudging the exact

balances above, and then below some threshold.

All rewards are calculated as a "base reward per increment." An increment is one unit of

effective balance. An active validator has up to 32 increments. The

EFFECTIVE_BALANCE_INCREMENT is 1 ETH, BASE_REWARD_FACTOR is 64, and the

total_active_balance is the amount of all staked effective ETH.

“Increments” seems difficult to understand. Simply put, if a validator has a 32 ETH effective

balance, it has 32 increments.

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 // 𝐸𝐹𝐹𝐸𝐶𝑇𝐼𝑉𝐸 𝐵𝐴𝐿𝐴𝑁𝐶𝐸 𝐼𝑁𝐶𝑅𝐸𝑀𝐸𝑁𝑇

All rewards are proportional to the effective balance a validator has. For attestations, base

reward calculation proves it explicitly. Assume a validator has n increments and b

base_reward_per_increment. Its expected long-term return per epoch is nb.

https://www.codecogs.com/eqnedit.php?latex=base%5C_reward%5C_per%5C_increment%20%3D%20EFFECTIVE%5C_BALANCE%5C_INCREMENT%20*%20BASE%5C_REWARD%5C_FACTOR%20%2F%2F%20%5Clfloor%20%5Csqrt%5B%5D%7Btotal%5C_active%5C_balance%7D%5Crfloor#0
https://www.codecogs.com/eqnedit.php?latex=base%5C_reward%20%3D%20base%5C_reward%5C_per%5C_increment%20*%20increments#0

Meanwhile, the effective balance influences the chosen probability for sync committee

participants and block proposers. If the total increments of all active validators are T, the

chosen probability is scaled with n/T.

Assume we have a validator with an effective balance of 32 ETH. Rated Network shows

there are 888,406 active validators with 28,428,992 ETH effective balances on 2023.12.6.

According to our calculation on the spreadsheet, a validator can earn 12128 Gwei per epoch

on a long-term average. That means a validator can earn about 0.996012 ETH on average

per year (82125 epochs) with 3.11% APR. Recall the calculation of

base_reward_per_increment. The following figure shows the base reward is inverse root

scaling by the total active staked balance. As the number of validators increases, the base

reward decreases. Since attestation rewards are proportional to base_reward, it will also

decrease.

On the contrary, the proposal reward might increase. Since every attester needs to finish an

attestation per epoch, attestations per slot will also increase when the total number

increases. A proposer can receive rewards from every attestation included in the block.

https://www.codecogs.com/eqnedit.php?latex=chosen%5C%20probability%20%5Cpropto%20%20%5Cfrac%7Bincrements%7D%7Btotal%5C%20increments%7D%20#0
https://docs.google.com/spreadsheets/u/0/d/1noHNmSfMbjtIaIYzMvQvSqf8ryhCT3mb_97odHl9ErQ/edit

Thus, the proposer may get more rewards due to increasing attestations. But money doesn't

grow on trees. Since the selected probability is proportional to the ratio of your active

balance divided by the total active balance, the chances of being a validator are also

reduced.

1. Attestation Rewards and Penalties

Before digging into the rabbit hole, let's see some basics.

● Supermajority: A vote is a supermajority vote if over 2/3 staked balance on it.

● Checkpoint: A checkpoint is a block in the first slot of an epoch or the

preceding most recent blocks (if the block at the first slot is missed).

● Justified: When an epoch ends, if its checkpoint gained a 2/3 of supermajority,

this checkpoint is justified.

● Finalized: If checkpoint A is justified and checkpoint B becomes justified in the

next epoch, then A becomes finalized.

● Casper FFG: Casper the Friendly Finality Gadget (Casper FFG) is an overlap

atop a block proposal mechanism for finality.

● LMD GHOST: Latest Message Driven Greedy Heaviest-Observed Sub-Treeis

(LMD-Ghost) is a fork choice rule used by nodes to determine the best chain.

An attestation contains three votes:

Source Vote: Submit an attestation that correctly identifies the source (recent

justified block) of Casper FFG, and gets included within

sqrt(SLOTS_PER_EPOCH)=5 slots.

Target Vote: Submit an attestation that correctly identifies the target (next block to be

justified) of Casper FFG, and gets included within SLOTS_PER_EPOCH = 32 slots.

Head Vote: submit an attestation that correctly identifies the head of the chain, and

gets included within the next (MIN_ATTESTATION_INCLUSION_DELAY = 1) slot.

Attesters will only be rewarded if their votes are completed correctly and timely.

Since the attestation could be up to 32 slots long, it could have been generated in the

current epoch or the previous epoch, so the first thing Ethereum does is to check the

epoch of the attestation's target vote to see which epoch in the beacon state we

should be looking at. If the target vote is in the current epoch, then the justified

checkpoint is the current justified checkpoint. Otherwise, it is the previous justified

checkpoint.

https://consensys.io/blog/the-ethereum-2-0-beacon-chain-explained

Next, Ethereum determines the correctness of three votes, noting that only when

the previous conditions are met will the following judgment be made. This implies that

these votes are interlocked: source vote → target vote → head vote. If a vote is

incorrect, the subsequent votes will also be incorrect. Consequently, a validator must

first complete the correct source vote to receive the reward for the target vote.

Similarly, to obtain the reward for the head vote, a validator must first complete both

the valid source and target vote.

Lastly, Ethereum evaluates the timeliness of the three votes:

“Inclusion delay” is the measurement for timeliness. It refers to the interval between

the current slot and the slot where the attestation was made. For the block containing

the attestation to be valid, the inclusion_delay must lie in the open interval of

[MIN_ATTESTATION_INCLUSION_DELAY,SLOTS_PER_EPOCH] = [1,32]. In other

words, a valid attestation must be included in the next block or any block after up to

32 slots.

The inclusion delay restriction is a new requirement introduced after the Altair

upgrade. In Phase 0, all valid votes receive rewards, with additional rewards

inversely proportional to the inclusion delay. We attached the formula here:

After the Altair upgrade, the timeliness restrictions mentioned before replaced

inclusion delay rewards. The change aims to reward behaviors that contribute to

chain development more accurately. For example, voting for the correct head is

always more profitable in Phase 0, even if it means waiting longer and risking not

being included in the next slot. However, rewarding the right head vote for 30 slots

late makes little sense.

The entire timeliness judgment process is as follows:

1. Assuming the source vote is correct, we determine if the inclusion delay of the

source vote is completed within integer_sqrt(SLOTS_PER_EPOCH)= 5​slots

(or less).

2. Assuming the target vote is correct, we check if the inclusion delay of the

target vote is completed within SLOTS_PER_EPOCH=32 slots (or less).

https://www.codecogs.com/eqnedit.php?latex=Inclusion%5C%3BDelay%5C%3BReward%20%3D%20base%5C%3Breward%20%20%2F%20inclusion%5C%3Bdelay%20#0

Target vote is always helpful, but if the timespan of the target vote is at most a

few epochs, it is relatively straightforward. Therefore, 32 slots serve as a

reasonable constraint. This check is redundant because a block's attestation

must be at least 32 slots.

3. Assuming the head vote is correct, we verify if the inclusion delay of the head

vote exactly equals MIN_ATTESTATION_INCLUSION_DELAY=1.

Since head votes have only one empty slot, the head vote will become invalid

if the block at the next slot is missed or late. However, this is undoubtedly

beyond the attester's control. Therefore, head votes only receive rewards and

are not penalized after the Altair upgrade (Phase 0 does have a penalty for

the wrong head vote). So well-performing validators can maintain a balanced

income during the inactivity leak period, as we expect at least 1/3 of blocks to

be lost: they won't receive rewards, but they won't be penalized either.

Here is an attestation reward matrix:

Source

Vote

Target

Vote

Head

Vote

Reward Penalty Result Value

(Gwei)

❌ ❌ ❌ 0 40/64 *

base_reward

-40/64 *

base_reward

-7580

✅ ❌ ❌ 14/64 *

base_reward

26/64 *

base_reward

-12/64 *

base_reward

-2274

✅ ✅ ❌ 40/64 *

base_reward

0 40/64 *

base_reward

7580

✅ ✅ ✅ 54/64 *

base_reward

0 54/64 *

base_reward

10233

The reward may deviate from the results in this table due to the following reasons:

1. Other Validators complete tasks imperfectly: e.g., The next slot cannot

include the validator's attestation and sync committee signature if the

proposer is offline or poorly connected.

2. Low Participation Rate: The reward for a Validator performing attestation

duty is proportional to the percentage of all validators performing that duty.

For example, if only 80% of the validators fulfill their duties, the reward for

each validator who performs their duties is multiplied by 0.8.

There is an additional type of reward known as the slashing whistleblower reward.

The treatment of these rewards differs because predicting the number of slashing

events in advance is impossible. Moreover, they do not contribute to the issuance of

Ether because the slashed validator receives a larger slashing penalty, which offsets

the rewards earned by the informants of the slashing events. If a proposer includes

“slashing” evidence in their proposal, he can get rewards as the formula says:

Where WHISTLEBLOWER_REWARD_QUOTIENT = 512. We can do a simple calculation

for this scenario, assuming the slashed validator has a 32 ETH effective balance.

There are 32 * 10^9 // 512 = 62500000 Gwei = 0.0625 ETH rewards. The attester

who includes the slashed evidence can get 7/8 * 0.0625 = 0.054678 ETH.

2. Sync Committee Rewards and Penalties

Sync committee rewards emerged in the Atlair upgrade. Only one sync committee is

active at any one time, and it contains a randomly selected subset of the total set of

validators whose size is SYNC_COMMITTEE_SIZE=512. A sync committee

performs its duties for only EPOCHS_PER_SYNC_COMMITTEE_PERIOD=256
epochs until the following committee takes over.

Since Ethereum introduced this component to serve light clients, we'll start with some

introductions first. Light nodes are nodes that run light client software. They can

interact with the blockchain and effectively verify the state without storing a local copy

of the blockchain data. With the sync committee, light clients can process only block

headers to update their knowledge of the latest Ethereum blocks. This allows

Ethereum nodes to run on mobile phones and IoT devices where computing

resources are scarce, thus creating ubiquitous Ethereum. As an Ethereum.org

article says: “Imagine a bicycle rental service(opens in a new tab) that uses an app

with an embedded light client to verify that you own the rental service's NFT quickly

and if so, unlocks a bicycle for you to ride away on!”

https://www.codecogs.com/eqnedit.php?latex=whistleblower%5C%3Breward%20%3D%20validator%5C_effective%5C_balance%20%2F%2F%20WHISTLEBLOWER%5C_REWARD%5C_QUOTIENT#0
https://ethereum.org/en/developers/docs/nodes-and-clients/light-clients/#how-do-light-clients-work
https://ethereum.org/en/developers/docs/nodes-and-clients/light-clients/#how-do-light-clients-work

It is important to note that the sync committee has no slashing, so its security relies

on the honest trust assumption. However, as long as a significant portion of the entire

set of Ethereum validators is honest, it is statistically unlikely that the sync committee

will sign off on an invalid block header, as its percentage of honesty will reflect the

honesty of the entire set of Ethereum validators.

Like being chosen to propose a block, the probability of serving as a sync committee

participant is also proportional to a validator’s effective balance. For any given

validator, this will rarely happen.

Sync committee participants are rewarded for every slot in which they correctly

perform their duties. With 512 members in the committee and 32 slots per epoch, the
reward per validator per slot for correct participation is:

T refers to the total increments of the active validator set, so this is a large number.

We already mentioned that there are 888,406 active validators. By some

calculations, we have 2 / (64 * 512 * 32) * 888406 * 12128 Gwei ~= 20550 Gwei.

If a validator is chosen in the sync committee that doesn't participate (sign the wrong

head block or doesn't show up), it receives a penalty equal to the reward it would

have earned for being correct. The block proposer receives no rewards for the

missing contribution.

Participant Reward Penalty Result Value

(Gwei)

❌ 0 1/524288 *

base_reward

-1/524288 *

base_reward

-20550

✅ 1/524288 *

base_reward

0 1/524288 *

base_reward

20550

https://www.codecogs.com/eqnedit.php?latex=sync%5C%3Bcommittee%5C%3Brewards%20%3D%20%5Cfrac%7BSYNC%5C_REWARD%5C_WEIGHT%7D%7BSLOTS%5C_PER%5C_EPOCH%20*%20SYNC%5C_COMMITTEE%5C_SIZE%20*%20WEIGHT%5C_DENOMINATOR*T*b%7D%20#0

3. Proposal Rewards and Penalties

The proposal rewards for a validator are aligned with attestation rewards and sync

committee rewards. That means including the corresponding vote could earn the

same percentage of rewards as the attestation and sync committee counterparts.

The proposal weight equals 8/64 = 1/8, which means 7/8 of rewards go to attesters

and sync committee participants who perform their duties, and 1/ 8 of rewards go to

proposers who include the evidence in the blocks. If an attester creates a correct,

timely source vote and is included by a proposer, he can get 14/54 * 8/64-8 = 1/27.

Suppose everyone (including the proposers) performs perfectly at everything. In that

case, the attestation rewards add up to 54/64 of the base reward, and the proposer

rewards add up to 54/56 of the 8/64 proposer share (i.e., the remaining 8/64 of the

base reward). Note that the proposer's reward is determined by the attestation

numbers included in the block. We created the following pie charts to make the

reward distribution more straightforward.

Given the formula as follows:

Where R is the total attestation rewards in a block for attesters, since each validator

must make an attestation per epoch, we have 888406 // 32 = 27762 validators per

slot. A block contains 27762 * 10233 Gwei = 0.284088546 ETH attestation rewards.

A proposer got 1/7 * R = 0.040584078 ETH rewards. According to the ETH2 book:

“The reward could be higher if the chain is not performing perfectly, as after a skip

slot, the proposer can include high-value attestations from the missed slot.”

Proposers can also get rewards by including the sync committee’s output. For the

whole committee, a block proposer can get:

According to our previous calculation, the single sync committee contribution per

validator per slot is 20550 Gwei. So we get 512 / 7 * 20550 Gwei = 1,503,086 Gwei

~= 0.0015 ETH.

https://www.codecogs.com/eqnedit.php?latex=R%20%3Dtotal%5C_active%5C_validators%2F%20(SLOTS%5C_PER%5C_EPOCH%20*%20attestation%5C_rewards%5C_per%5C_slot)#0
https://www.codecogs.com/eqnedit.php?latex=attestation%5C%3Bproposal%5C%3Brewards%20%3D%20PROPOSER%5C_WEIGHT%2F%20(WEIGHT%5C_DENOMINATOR%20-%20PROPOSER%5C_WEIGHT%20)%20*%20R#0
https://eth2book.info/capella/part2/incentives/rewards/#rewards-in-numbers
https://www.codecogs.com/eqnedit.php?latex=sync%5C%3Bcommittee%5C%3Bproposal%5C%3Brewards%20%3D%20%5Cfrac%7BSYNC%5C_COMMITEE%5C_SIZE%20*%20PROPOSER%5C_WEIGHT%7D%7BWEIGHT%5C_DENOMINATOR%20-%20PROPOSER%5C_WEIGHT%7D%20%20#0

Source

Vote

Included

Target

Vote

Included

Head

Vote

Included

Reward Penalty Result Value (Gwei)

❌ ❌ ❌ 0 0 0 0

✅ ❌ ❌ 14/56 *

base_reward

* 8/ 64-8

0 14/56 *

base_reward

* 8/ 64-8

-2274

✅ ✅ ❌ 40/56 *

base_reward

* 8/ 64-8

0 40/56 *

base_reward

* *8/ 64-8

7580

✅ ✅ ✅ 54/56 *

base_reward

* 8/ 64-8

0 54/56 *

base_reward

* *8/ 64-8

10233

We mentioned whistleblower rewards in the attestation reward section before. A

proposer who includes the slashed evidence can get 1/8 * whistleblower reward =

0.0078125 ETH.

The probability of being chosen to propose a block is proportional to effective

balance. If you have a 32 ETH effective balance, and another validator has a 16 ETH

effective balance, you are twice as likely to be selected.

Missing a proposal will not cause any penalty. However, the reward for proposing a

block is relatively high. Missing a proposal means losing a lot of ETH, thus

incentivizing proposers to perform their duties well.

2.2.3 Break-Even Uptime for Validators
Suppose there are two kinds of validators: fully functioning online and offline

validators, where p is the proportion of fully functioning and online (p = 0.9⇒ p =

90%). Then, the maximum reward (long-term average) for a fully functioning online

validator is base_reward * (50/64 * p + 14/64 * p**2). The derivation follows:

First, consider the attestation and sync committee rewards for 56/64 and ignore the

proposer rewards for 8/64. All rewards will be based on the collective reward

mechanism (considering the participation rate p) multiplied by p.

Assuming that X is the maximum reward for completing a given duty, and p is the

proportion of verifiers who complete that duty, completing that duty will result in a p *

X reward. Failing to do so will result in a penalty of X.

The rewards and penalties are different because we need penalties to ensure that

attestation is a net gain if you're online at least about 2/3 of the time. The inactivity

leak period might be activated if validators can't meet the minimum online time. If so,

a validator’s optimal reward is reduced to 0, while bad-performing validators are

penalized with increasing penalties. We’ll introduce more details in the last part of our

series: “Inactivity Leak and Slashing” if you are interested.

Thus, the maximum possible reward ratio for Non-Proposal Rewards is 42/64 * p +
14/64 * p^2. The head vote is multiplied by p twice for:

- The first p is multiplied by the proportion of validators that perform

attestation.

- The second p is multiplied by the proportion of validators that are proposing

blocks. We use p here because the proposer is chosen pseudo-randomly among all

active validators. (We don’t consider the influence of effective balance here)

Now consider Proposal Rewards. Since included attestation derives it, we only need

to worry about the proportion of duties the attester performs, so simply multiply all the

rewards by the first p, which is 8/64 * p.

When added together, the total percentage is 50/64 * p + 14/64 * p^2.

If a validator is offline, the penalty percentage is -42/64. So we have 50/64 * p +
14/64 * p^2 - 42/64 (1-p). If the equation is greater than 0, a validator will make

profits. Through some mathematics, we figure that if p > 3/7 (~=42.86%), a validator

can break even. So don’t worry too much about occasional downtime.

2.2.4 Optimal Rewards Table for a Single Validator

Duty Expected

Time

Duration Rewards (Ether)

Attestation Once per

epoch (6.4

minutes)

1 slot 0.000010233

Block

Proposal

Per two

months

1 slot 0.04208716371

Sync

Committee

Participation

Per five years 256 epochs

(~ 1 day 3

hours)

0.1683456

Slashing

Whistleblower

Unpredictable 1 slot At most 0.0625 ETH

(1/8 for proposer, 7/8 for

attester)

Using base_reward as the accounting unit might not be easy to read, so we made a

table to show the optimal rewards in each case.

Appendix
1. Consensus Layer Rewards Calculation Spreadsheet

Reference
1. Upgrading Ethereum | 2.8 The Incentive Layer

2. Proof-of-stake rewards and penalties | ethereum.org

3. The Ethereum 2.0 Beacon Chain Explained | Consensys

4. Phase0 Consensus Specs

5. Capella Consensus Specs

6. Phase0 Annotated Specs

7. Altair Annotated Specs

8. Rewards and Penalties - beaconcha.in Knowledge Base

9. How does my validator earn ETH? - EthStaker KB

https://docs.google.com/spreadsheets/u/0/d/1noHNmSfMbjtIaIYzMvQvSqf8ryhCT3mb_97odHl9ErQ/edit
https://eth2book.info/capella/part2/incentives/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/
https://consensys.io/blog/the-ethereum-2-0-beacon-chain-explained
https://github.com/ethereum/consensus-specs/tree/dev/specs/phase0
https://github.com/ethereum/consensus-specs/tree/dev/specs/capella
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
https://github.com/ethereum/annotated-spec/blob/master/altair/beacon-chain.md
https://kb.beaconcha.in/ethereum-staking/rewards-and-penalties
https://docs.ethstaker.cc/ethstaker-knowledge-base/rewards/chain-rewards

